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Abstract

In the present study, direct numerical simulation of turbulent heat transfer in a channel flow has been carried out in order to

investigate the characteristics of surface heat-flux fluctuations. The Reynolds numbers based on the friction velocity and the channel

half width are 180, 395, 640 and 1020, and the molecular Prandtl numbers are 0.025 and 0.71. A local peak for Pr ¼ 0:71 and large

peaks for Pr ¼ 0:025 appear in the spanwise-wavenumber power spectra at low wavenumbers, and these peaks become more sig-

nificant with increasing Reynolds number. This suggests that the effect of large-scale structures extends even to the surface heat-flux

fluctuations, and increases with increasing Reynolds number. In addition, it was found that the surface heat-flux fluctuations for

Pr ¼ 0:71 are mostly similar to the streamwise wall shear-stress fluctuations, while a noticeable dissimilarity can be seen in the large

positive and negative fluctuations.
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Keywords: Surface heat-flux fluctuations; Reynolds- and Prandtl-number dependence; Large-scale structure; Direct numerical simulation
1. Introduction

The behavior of wall variables in turbulent channel

and boundary layer flows is of considerable interest in

applications involving drag, noise and heat transfer.

Recently, direct numerical simulation (DNS) has be-

come an essential tool to examine turbulence phenom-

ena, and several studies have used DNS to investigate
the behavior of the wall variables. In the flow field, Choi

and Moin (1990) examined the characteristics of the wall

pressure fluctuations pw for Res ¼ usd=m ¼ 180, where us
is the friction velocity, d the channel half width, and m
the kinematic viscosity. Jeon et al. (1999) investigated

the characteristics of two components of the wall shear-

stress fluctuations, s1 ¼ lðou0=oyjwÞ and s3 ¼ lðow0=
oyjwÞ for Res ¼ 180, where u0 and w0 denote the
streamwise and spanwise velocity fluctuations, respec-

tively, l the dynamic viscosity and y the distance from

the wall. In these studies, the functional dependence of

the mean-square values on Reynolds number and the
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scaling law of the power spectra have been fairly well

examined as compared with results from the existing

experimental data.

In the thermal field, Kim and Moin (1989) examined

the behavior of the surface heat-flux fluctuations

qw ¼ aqcpðoh0=oyjwÞ for Res ¼ 180 at Pr ¼ 0:71 assum-

ing constant heat generation throughout the fluid, where

h0 denotes the temperature fluctuations, a the thermal
diffusivity, q the density, and cp the specific heat at

constant pressure. They showed the root-mean-square

value and the instantaneous field, and reported that the

regions of high surface heat-flux coincide with the re-

gions of high-speed fluid. On the other hand, the surface

heat-flux is considered to be a modulation of the wall

temperature, and there are several DNS studies on the

wall temperature fluctuations (i.e. the near-wall limiting
value of the temperature fluctuations) in a turbulent

channel flow. Antonia and Kim (1991) investigated the

near-wall limiting behavior for Res ¼ 180 at Pr ¼ 0:1,
0.71 and 2.0 using DNS database of Kim and Moin

(1989). They indicated that the limiting value of the

temperature fluctuations does not depend on the Prandtl

number at PrP 0:1. Kawamura et al. (1998) examined

the Prandtl-number effect on turbulence statistics for
Res ¼ 180 at various Prandtl numbers ranging from
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Pr ¼ 0:025 to 5.0 with a constant time-averaged heat-

flux condition. They showed that the limiting value of

the temperature fluctuations depends strongly on the

Prandtl number when Pr is less than 0.1. Kawamura et
al. (1999) also investigated the Reynolds- and Prandtl-

number effects on turbulence statistics for Res ¼ 180 and

395 at Pr ¼ 0:025, 0.2 and 0.71, and suggested that the

Reynolds-number effect on the limiting value of the

temperature fluctuations for Pr ¼ 0:025 is significant,

while those for Pr ¼ 0:2 and 0.71 are rather small. Na

and Hanratty (2000) examined the Prandtl-number ef-

fect on the near-wall limiting behavior for Res ¼ 180 at
higher Prandtl numbers, Pr ¼ 1:0, 3.0 and 10.0 with a

constant temperature difference condition. They showed

the streamwise-wavenumber spectra of the temperature

fluctuations normalized by their own mean-square val-

ues in close vicinity to the wall, and indicated that the

contribution of high wavenumbers to the mean-square

value decreases with increasing Prandtl number.

Kowalewski et al. (2003) investigated the convection
velocities of thermal structures in an open channel for

Res ¼ 180 at Pr ¼ 0:71 and 5.4 with iso-thermal and iso-

flux boundary conditions. They indicated that in the

near-wall region the convection velocity of the temper-

ature fluctuations at Pr ¼ 5:4 is only about half of that

for the streamwise velocity fluctuations. However, over

Res > 395, the Reynolds- and Prandtl-number effects on

the surface heat-flux (or the wall temperature) fluctua-
tions from DNS have not been reported to date.

Recently, with the rapid increase in computer power,

DNSs of turbulent channel flow have been carried out at

relatively high Reynolds numbers (see, for example,

Antonia and Kim, 1994; Moser et al., 1999; Abe et al.,

2001; Iwamoto et al., 2002; Tanahashi et al., 2003; Sa-

take et al., 2003). In addition, large-scale DNS has been

performed on a turbulent channel flow for Res ¼ 550
(del �Alamo and Jim�enez, 2001, 2003). As for turbulent

heat transfer in a channel flow, the present authors’

group has also performed large-scale DNS with a con-

stant time-averaged heat-flux condition for Res ¼ 640

with two Prandtl numbers of Pr ¼ 0:025 and 0.71 (Abe

and Kawamura, 2002). More recently, we have estab-

lished DNS database of turbulent heat transfer in a

channel flow for a higher Reynolds number of
Res ¼ 1020 with Pr ¼ 0:025 and 0.71. To the authors’

knowledge, DNS for Res ¼ 1020 with Pr ¼ 0:025 and

0.71 is the first DNS computation with turbulent heat

transfer in a channel flow at a Reynolds number of

Oð103Þ.
In the present study, we have performed DNS of

turbulent heat transfer in a channel flow, using our DNS

database for four Reynolds numbers (Res ¼ 180, 395,
640 and 1020) with two Prandtl numbers (Pr ¼ 0:025
and 0.71) in order to examine the characteristics of the

surface heat-flux fluctuations, where Pr ¼ 0:025 and 0.71

are chosen to assume mercury and air, respectively, as
the working fluids. The wide range of Reynolds numbers

and the quite different Prandtl numbers give us a sound

basis to investigate the Reynolds- and Prandtl-number

effects. The objectives of the present study are to report
the behavior of the surface heat-flux fluctuations as

described by their root-mean-square values, power

spectra, two-point correlations, space–time correlations,

probability density functions and instantaneous fields,

and to discuss the Reynolds- and Prandtl-number ef-

fects. Moreover, since u0 shows almost the same be-

havior as h0 for Pr ¼ 0:71 in the near-wall region with

the present thermal boundary condition, high similarity
is expected between s1 and qw for Pr ¼ 0:71, and this

point is also discussed.
2. Numerical procedure

The flow is assumed to be a fully developed turbulent

channel flow with a passive temperature field. It is dri-
ven by the streamwise mean pressure gradient. The

temperature field is imposed by uniform heating at both

walls with a constant time-averaged heat-flux. Note that

in the present thermal boundary condition the average

heat flux is constant but the instantaneous one is time

dependent. All the variables computed from the Navier–

Stokes and energy equations are normalized by the

friction velocity us, the friction temperature Tsð¼ Qw=
qcpusÞ and the channel half width d, where Qw is the

given averaged surface heat flux.

In the present computation, a fractional step method

proposed by Dukowics and Dvinsky (1992) is adopted,

and a semi-implicit time advancement is used. For the

viscous terms with wall-normal derivatives, the Crank–

Nicolson method is used. For the other terms, the sec-

ond-order Adams–Bashforth method is applied for
Res ¼ 180, 395 and 640, and the low storage third-order

Runge–Kutta method (Spalart et al., 1991) for Res ¼
1020. For the spatial discretization, the finite difference

method is used. The numerical scheme proposed by

Morinishi et al. (1998) with the fourth-order accuracy is

adopted in the streamwise and spanwise directions,

whereas the second-order one is applied in the wall-

normal direction. Detailed numerical procedures can be
found in Kawamura et al. (2000) and Abe et al. (2001).

Several experimental studies in wall turbulence for

high Reynolds numbers suggest that the contribution of

the outer layer to the inner layer increases with

increasing Reynolds number (for example, Naguib and

Wark, 1992; Hites, 1997; €Osterlund, 1999). Moreover,

recent DNS work by del �Alamo and Jim�enez (2001,

2003) at a relatively high Reynolds number of Res ¼ 550
indicates that the effect of large-scale structures in the

outer layer penetrates into the buffer region. Therefore,

the size of the present computational domain was made

as large as possible: 12:8d� 2d� 6:4d in the streamwise



Table 1

Computational box size, grid points, spatial resolution, calculation time step and sampling time period

Res 180 395 640 1020

Pr 0.025, 0.71 0.025, 0.71 0.025, 0.71 0.025, 0.71

Lx � Ly � Lz 12:8d� 2d� 6:4d 12:8d� 2d� 6:4d 12:8d� 2d� 6:4d 12:8d� 2d� 6:4d
Lþ
x � Lþ

y � Lþ
z 2304· 360· 1152 5056· 790· 2528 8192· 1280· 4096 13 056· 2040· 6528

Nx � Ny � Nz 256· 128· 256 512· 192· 512 1024· 256· 1024 2048· 448 · 1536
Dxþ, Dyþ, Dzþ 9.00, 0.20–5.90, 4.50 9.88, 0.15–6.52, 4.94 8.00, 0.15–8.02, 4.00 6.38, 0.15–7.32, 4.25

Dtþ 0.027 0.012 0.012 0.102

Tum=Lx 49 50 14 10
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ðxÞ, wall-normal ðyÞ and spanwise ðzÞ directions,

respectively, for all computational cases. The computa-

tional domain size ðLx � Ly � LzÞ, number of grid points
ðNx � Ny � NzÞ, spatial resolution ðDx;Dy;DzÞ, calcula-
tion time step ðDtÞ and sampling time period ðTum=LxÞ
are given in Table 1, where T and um are the sampling

time and the bulk mean velocity, respectively.
3. Results and discussion

3.1. DNS results at Res ¼ 1020

Before we discuss the behavior of the surface heat-

flux fluctuations, the validation of DNS results at

Res ¼ 1020 is presented using conventional turbulence

statistics. Fig. 1(a) shows the mean velocity distribution

for Res ¼ 180, 395, 640 and 1020. The experimental re-

sult of Wei and Willmarth (1989) at Res � 1017 and the
DNS result of Moser et al. (1999) at Res ¼ 590 are also

included for comparison. In Fig. 1(a), agreement be-
Fig. 1. Meanvelocityand temperaturedistributions: ––,Res ¼ 1020; - - -,

Res ¼ 640; Æ Æ Æ, Res ¼ 395; – � –, Res ¼ 180. (a) �uþ: – �� –, Moser et al.

(1999) for Res ¼ 590; �, Wei and Willmarth (1989) for Res � 1017; (b)
�hþ: �, Kader (1981) for Res ¼ 1020.
tween the two results (the present study for Res ¼ 1020

and Wei and Willmarth, 1989) is good. In addition, it

can be seen that the intermediate region expands almost
logarithmically with increasing Reynolds number, which

also agrees with the result of Satake et al. (2003) for

Res ¼ 1100. The mean temperature distribution is given

in Fig. 1(b) for Res ¼ 180, 395, 640 and 1020 with

Pr ¼ 0:025 and 0.71, compared with the empirical for-

mulas of Kader (1981) at Res ¼ 1020 with the two

Prandtl numbers. In Fig. 1(b), the present results at

Res ¼ 1020 agree well with the empirical formulas of
Kader (1981) for both Pr ¼ 0:025 and 0.71. For

Pr ¼ 0:71 the conductive sublayer is evident up to

yþ � 5 for each Reynolds number, and the intermediate

region expands almost logarithmically with increasing

Reynolds number, while for Pr ¼ 0:025 only the con-

ductive sublayer appears in the whole region indepen-

dently of Reynolds number.

The rms (root-mean-square) values of the streamwise
velocity ðu0þrmsÞ and the temperature fluctuations ðh0þrmsÞ
shown in Fig. 2(a) and (b), respectively, for the given

Reynolds and Prandtl numbers. For the streamwise

velocity fluctuations, agreement between the two results

(the present study for Res ¼ 1020 and Wei and Willm-

arth, 1989) is satisfactory except for the peak location

where the measurement is extremely difficult. In addi-

tion, the peak value increases slightly with increasing
Reynolds number. For the temperature fluctuations,
Fig. 2. Rms of streamwise velocity and temperature fluctuations: ––,

Res ¼ 1020; - - -, Res ¼ 640; Æ Æ Æ, Res ¼ 395; – � – Res ¼ 180. (a) u0þrms:

– �� –, Moser et al. (1999) for Res ¼ 590; �, Wei and Willmarth (1989)

for Res � 1017; (b) h0þrms: �, Subramanian and Antonia (1981) for

Res � 1055.



H. Abe et al. / Int. J. Heat and Fluid Flow 25 (2004) 404–419 407
h0þrms for Pr ¼ 0:71 shows almost the same Reynolds-

number dependence as seen in u0þrms, while that for

Pr ¼ 0:025 increases considerably with increasing Rey-

nolds number.
It should be noted that the total shear-stress and the

total heat-flux reach statistically steady states for the

given Reynolds and Prandtl numbers although they are

not shown here. Detailed analysis on the turbulence

statistics will be reported elsewhere.

3.2. Root-mean-square values

The root-mean-square (rms) values of the surface

heat-flux fluctuations qw normalized by the given aver-

aged surface heat-flux Qw for Res ¼ 180, 395, 640 and

1020 with Pr ¼ 0:025 and 0.71 are shown in Fig. 3. The

streamwise wall shear-stress fluctuations s1 are also

plotted for comparison. Note that in the DNS works

referred in Fig. 3, Jeon et al. (1999) and Kim and Moin

(1989) reported the rms values of s1 and qw, respectively.
Also, Antonia and Kim (1994) and G€unther et al. (1998)
gave the limiting values of the spanwise vorticity and the

streamwise velocity fluctuations, respectively, i.e. s1rms.

As in the rest of the DNS works, the rms values of s1
and qw have been estimated from the limiting values of

the spanwise vorticity and the temperature fluctuations,

respectively, which can be obtained from their DNS

database. In Fig. 3, the rms values of qw increase with
increasing Reynolds number for both of the Prandtl

numbers. The increasing rate for Pr ¼ 0:025 is larger

than the one for Pr ¼ 0:71 because of the increasing

convective effect. Moreover, it is interesting to note that

the rms value of qw for Pr ¼ 0:025 increases almost

logarithmically with increasing Reynolds number. When

the Reynolds number becomes Res � 1000, the rms

value of qw for Pr ¼ 0:025 seems to exceed that of qw for
Fig. 3. Variations of the rms values of the streamwise wall shear-stress

and surface heat-flux fluctuations as a function of the Reynolds

number. �, s1; d, qw, for Pr ¼ 0:71; D, qw for Pr ¼ 0:025; r, Kim and

Moin (1989); +, Gilbert and Kleiser (1991); �, Kasagi et al. (1992); �,

Kasagi and Ohtsubo (1993); O, Antonia and Kim (1994); ·, G€unther

et al. (1998); h, Jeon et al. (1999); – � –, fitting for s1rms=sw by Fischer

et al. (2001) from DNS; – �� –, fitting for s1rms=sw by Fischer et al.

(2001) from experiments; - - -, fitting for qwrms
=Qw for Pr ¼ 0:71; ––,

fitting for qwrms
=Qw for Pr ¼ 0:025.
Pr ¼ 0:71. This is because the effect of large scales is

significant for Pr ¼ 0:025, and increases considerably

with increasing Reynolds number as discussed later.

As for s1, the present results agree well with those of
other DNSs and with experiment. The value increases

slightly with increasing Reynolds number and it seems

to be nearly saturated at about 0:4sw at high Reynolds

numbers. This trend corresponds to a recent experi-

mental result by Metzger and Klewicki (2001), who

examined the wall value of the spanwise vorticity fluc-

tuation in a turbulent boundary layer at sufficiently high

Reynolds numbers, although they showed a logarithmic
increase in the peak value of u0rms. A comparison be-

tween s1 and qw with Pr ¼ 0:71 reveals that the rms

values of qw are approximately 5% larger than those of

s1 at each Reynolds number.

3.3. Power spectra

The power spectra of qw are defined byZ 1

0

/ðkxÞdkx ¼
Z 1

0

/ðkxÞdkz ¼ q2wrms
; ð1Þ

where /ðkxÞ and /ðkzÞ are the power spectra, and kx and
kz are the wavenumbers in the x and z directions,

respectively. The streamwise- and spanwise-wavenum-

ber power spectra of qw normalized by the inner vari-

ables are given in Fig. 4. In the streamwise spectra, the

spectra for Pr ¼ 0:71 show good collapse at low and

intermediate wavenumbers and power increases slightly
with increasing Reynolds number at high wavenumbers,

although for Res ¼ 180 the spectra exhibit a noticeable

Reynolds-number dependence. In contrast, the spectra

for Pr ¼ 0:025 do not show good collapse at the whole

range of wavenumbers. With increasing Reynolds

number, power increases significantly at low wavenum-

bers and also increases noticeably at intermediate and

high wavenumbers.
Na and Hanratty (2000) suggested that in the close

vicinity to the wall, the temperature fluctuations at high
Fig. 4. One-dimensional wavenumber power spectra of qw for

Pr ¼ 0:025 and 0.71 normalized by the inner variables: (a) streamwise

wavenumber; (b) spanwise wavenumber.
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Prandtl numbers are greatly damped by the molecular

diffusion, which agrees with the finding of Campbell and

Hanratty (1983). The same type of figure as that of Na

and Hanratty (2000) is shown in Fig. 5, which gives the
streamwise-wavenumber spectra of qw normalized by

their own mean-square values for Res ¼ 180 and 1020 at

Pr ¼ 0:025 and 0.71 with the inner scaling. In Fig. 5, we

see that the contribution of high wavenumbers (i.e. small

scales) to the mean-square value decreases with

decreasing Prandtl number for the given Reynolds

numbers. Notably, this trend is more evident for

Res ¼ 1020. This result is in contrast to the finding of Na
and Hanratty (2000), and the difference must be due to

the different range of the Prandtl numbers. That is, the

present work is concerned with the Prandtl numbers,

Pr < 1, while Na and Hanratty (2000) considered the

Prandtl numbers, PrP 1. In the case of Pr < 1, small

scales are gradually damped by the enhanced conductive

effect with decreasing Prandtl number because the con-

tribution of thermal diffusion increases. This trend can
be seen in the instantaneous temperature field given later

in Fig. 22(a) and (b). Accordingly, in the present Pra-

ndtl-number range, the contribution of high wavenum-

bers to the mean-square value decreases with decreasing

Pr.
In the spanwise spectra, the spectra for Pr ¼ 0:71 and

0.025 show almost the same Reynolds-number effect.

That is, good collapse is found at intermediate and high
wavenumbers, whereas power at low wavenumbers in-

creases with increasing Reynolds number. However, the

spectra exhibit a considerable Prandtl-number effect. In

the case of Pr ¼ 0:71, the spectra for Res ¼ 180 show a

peak at kþz � 0:038 (corresponding to a wavelength of
Fig. 5. One-dimensional streamwise wavenumber power spectra of qw
for Res ¼ 180 and 1020 at Pr ¼ 0:025 and 0.71 normalized by their own

mean-square values with inner scaling: ––, Pr ¼ 0:71; - - -, Pr ¼ 0:025;

Æ Æ Æ, h0 at yþ ¼ 0:2 of Na and Hanratty (2000) for Res ¼ 150 at

Pr ¼ 10:0.
165 wall units). The wavenumber of kþz � 0:038 is

slightly different from that of kþx � 0:063 which corre-

sponds to a spanwise spacing of near-wall streaky

structures (i.e. 100 wall units). Considering the pre-
multiplied spectra (not shown here) instead of the

spanwise spectra, the maximum appears at kþz � 0:055
(corresponding to a wavelength of 115 wall units), which

is closer to the spanwise spacing of the streaks. This is

because the peak location in the pre-multiplied spectrum

corresponds to the wavelength of the energy-containing

eddy (see, for example, Perry et al., 1986). With

increasing Reynolds number, the power at low wave-
numbers exceeds the power at kþz � 0:038, indicating

that in the spanwise direction a large-scale pattern be-

comes more significant with increasing Reynolds num-

ber rather than the near-wall streaky structure. In the

case of Pr ¼ 0:025, on the other hand, the spectra do not

show a peak at an intermediate wavenumber for each

Reynolds number, but show a maximum peak at a low

wavenumber, suggesting that, in the case of Pr ¼ 0:025,
a streaky structure with a spanwise spacing of 100 wall

units does not exist in the surface heat-flux fluctuations

for the given Reynolds numbers, while a large-scale

structure exists even in the surface heat-flux fluctuations.

Fig. 6 shows the streamwise- and spanwise-wave-

number power spectra of qw normalized by the outer

variables. For Pr ¼ 0:71, the streamwise and spanwise

spectra show a decrease in power at low wavenumbers
with increasing Reynolds number, while showing an

increase in power at high wavenumbers, indicating that

the spectra for Pr ¼ 0:71 are not scaled with the outer

variables. In contrast, for Pr ¼ 0:025, the streamwise

and spanwise spectra show a systematic increase in

power at low wavenumbers with increasing Reynolds

number, which must result in a significant increase in the

rms values. Therefore, the streamwise and spanwise
spectra for Pr ¼ 0:025, with outer scaling, are normal-

ized by their own mean-square values and are shown in

Fig. 7. In Fig. 7, the streamwise and spanwise spectra,
Fig. 6. One-dimensional wavenumber power spectra of qw for

Pr ¼ 0:025 and 0.71 normalized by the outer variables: (a) streamwise

wavenumber; (b) spanwise wavenumber.



Fig. 7. One-dimensional wavenumber power spectra of qw for

Pr ¼ 0:025 normalized by their own mean-square values with outer

scaling.
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non-dimensionalized by their own mean-square values,
indeed show good collapse at low wavenumbers, sug-

gesting that for Pr ¼ 0:025, large scales are scaled well

with the outer variables.

At low wavenumbers, a local peak is found for

Pr ¼ 0:71 with Reynolds numbers over Res ¼ 395, while

a maximum peak appears for Pr ¼ 0:025 with the given

Reynolds numbers (see Fig. 6(b)). The origin of the

peaks observed in the spanwise spectra at low wave-
numbers must be closely associated with large-scale

motions (LSMs, hereafter) in the outer layer (see, for

example, Robinson, 1991). Therefore, the spanwise

spectra shown in Fig. 6 are presented again in Fig. 8

with linear scales. In the case of Pr ¼ 0:71, a clear local

peak appears at kzd ’ 5 (corresponding to a wavelength

of 1:3d) for the three Reynolds numbers, Res ¼ 395, 640

and 1020, and it becomes more prominent with
increasing Reynolds number. One may consider the lo-

cal peak observed at the low wavenumber to be a

numerical wiggle. We have taken this point into account

and the computation for Res ¼ 395 has been performed
Fig. 8. One-dimensional spanwise-wavenumber power spectra of qw
normalized by Qw and d in linear scales: (a) Pr ¼ 0:71; (b) Pr ¼ 0:025.
with long sampling times such as 50 wash-out times.

Moreover, a comparison of the results obtained from 25

and 50 wash-out times indicates that in both cases the

local peak exists at the same low wavenumber. In the
case of Pr ¼ 0:025, on the other hand, two large peaks

are observed at kzd ’ 2 and kzd ¼ 4–5 for Res ¼ 395, 640

and 1020 and the peak at kzd ¼ 4–5 (corresponding to a

wavelength of 1:3–1:6d) shows a maximum for each

Reynolds number. The values of these two peaks in-

crease significantly with increasing Reynolds number.

The wavelengths of the local peak for Pr ¼ 0:71 and of

the large peaks for Pr ¼ 0:025 correspond to the wave-
lengths where the spanwise pre-multiplied power spectra

in the outer layer show the most energetic power (not

shown here), indicating that the effect of the LSMs in the

outer layer extends even to the wall variables such as the

surface heat-flux fluctuations. At the lowest Reynolds

number, Res ¼ 180, for Pr ¼ 0:71 no peak is found at

low wavenumbers but a maximum peak is found at

kzd ’ 7 (corresponding to a wavelength of 165 wall units
or 0:9d), while, for Pr ¼ 0:025, a large peak is found at

kzd ’ 3 (corresponding to a wavelength of 378 wall units

or 2:1d). Since large and small scales are not clearly

separated at Res ¼ 180, this behavior must be attributed

to the low Reynolds-number effect.

3.4. Two-point correlations

The streamwise and spanwise two-point correlations

of qw for Res ¼ 180, 395, 640 and 1020 with Pr ¼ 0:71
and 0.025 are given in Figs. 9 and 10. In Figs. 9 and 10,

the separation distance for Pr ¼ 0:71 and 0.025 is non-

dimensionalized by the inner and outer variables,

respectively. In the streamwise separation, when the

Reynolds number is over Res ¼ 395, the correlations for

Pr ¼ 0:71 extend to larger streamwise separations with
increasing Reynolds number, whereas those for

Pr ¼ 0:025 do not show an appreciable Reynolds-num-

ber effect.

In the spanwise separation, for Pr ¼ 0:71, the span-

wise separation distance (in wall units) for maximum

negative correlation is almost the same for all four

Reynolds numbers, but the magnitude of the negative

maximum decreases appreciably with increasing Rey-
nolds number. Interestingly, as the Reynolds number

reaches Res ¼ 1020 a positive peak emerges at zþ � 110.

This trend is consistent with the behavior in the span-

wise two-point correlations of the wall shear stress ob-

tained from a recent experiment in a turbulent boundary

layer at high Reynolds numbers by €Osterlund (1999).

For Pr ¼ 0:025, in contrast, the magnitude of maximum

negative correlation is almost the same for all four
Reynolds numbers, but the spanwise separation distance

(in outer units) for the negative maximum moves slightly

towards a smaller separation with increasing Reynolds

number. At Reynolds numbers over Res ¼ 395, the



Fig. 9. Streamwise two-point correlation coefficients of qw: (a) Pr ¼
0:71; (b) Pr ¼ 0:025.

Fig. 10. Spanwise two-point correlation coefficients of qw: (a) Pr ¼
0:71; (b) Pr ¼ 0:025.
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negative maximum correlation is clearly shown at

z=d � 0:65, 0.60 and 0.52 for Res ¼ 395, 640 and 1020,

respectively. This behavior is caused by a variation of

the contribution from the spanwise energetic scales as
seen in Fig. 8(b).

At the lowest Reynolds number, Res ¼ 180, a

noticeable Reynolds-number dependence is found in the

streamwise and spanwise two-point correlations for

the two Prandtl numbers, which must be attributed to

the low Reynolds-number effect.
3.5. Space–time correlations

Three-dimensional power spectra /ðkx; kz;xÞ, where
x is the frequency, are computed with the same method

of Choi and Moin (1990) in order to obtain space–time

correlations. The data sets of 2048 and 4096 consecutive

instantaneous surface heat-flux fluctuations have been

used at time intervals of Dtþ ¼ 0:99 and 1.02 for Res ¼
180 and 1020, respectively. In the case of Res ¼ 180, the
total sampling number of 2048 is divided into 15 over-

lapping parts (50% overlap) with 256 frequency modes

ð0 < xd=us < 566:7), whereas, in the case of Res ¼ 1020,

the total sampling number of 4096 is divided into 7

overlapping parts (50% overlap) with 1024 frequency

modes ð0 < xd=us < 3135:4). With an integration of

/ðkx; kz;xÞ in the spanwise direction, two-dimensional

streamwise-wavenumber-frequency spectra /ðkz;xÞ can
be obtained. Then the space–time correlations of qw can

be obtained with an inverse Fourier transformation of

/ðkx;xÞ, and are defined as

Rðx; tÞ ¼
P

kx

P
x /ðkx;xÞe�ikxxe�ixt

q2wrms

: ð2Þ

Fig. 11 shows the space–time correlations of qw with

Pr ¼ 0:025 and 0.71 for two Reynolds numbers of

Res ¼ 180 and 1020, where the separations are non-di-

mensionalized by wall units. It is shown in Fig. 11 that
the surface heat-flux fluctuations propagate downstream

for the Reynolds and Prandtl numbers investigated. For

Pr ¼ 0:71, the correlations extend to larger streamwise

ðxþ > 1000Þ and temporal ðtþ > 100Þ separations for the
two Reynolds numbers. A noticeable Reynolds-number

dependence is found only at the large separations,

meaning that the effect of large-scale structures in the

outer layer becomes more significant with increasing
Reynolds number. In contrast, for Pr ¼ 0:025, the

space–time correlations show larger correlations at large

separations compared with those for Pr ¼ 0:71 with the

two Reynolds numbers due to a strong conductive effect.

Note that in Fig. 11(b) a noticeable correlation is found

at the largest separations, which is attributed to the ef-

fect of the present computational domain. A compari-

son of the space–time correlations between Pr ¼ 0:71
and 0.025 indicates that the inclination angle of the



Fig. 11. Contours of space–time correlations of qw: (a) Pr ¼ 0:71; (b) Pr ¼ 0:025. Line contours are for Res ¼ 1020, whereas shaded contours are for

Res ¼ 180. Contour levels are from 0.1 to 0.9 with increments of 0.1.

Fig. 12. Convection velocities Uþ
c of qw as functions of tþ and xþ: (a)

temporal separation; (b) streamwise separation. �, Pr ¼ 0:71 for

Res ¼ 180; D, Pr ¼ 0:71 for Res ¼ 1020; h, Pr ¼ 0:025 for Res ¼ 180;

O, Pr ¼ 0:025 for Res ¼ 1020.
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correlations for Pr ¼ 0:025 is much steeper than that of

the correlations for Pr ¼ 0:71, suggesting that qw for

Pr ¼ 0:025 has a larger convection velocity than the one

for Pr ¼ 0:71.
Several methods are proposed to determine the con-

vection velocity (see, for example, Wills, 1964; Choi and

Moin, 1990; Kim and Hussain, 1993; Jeon et al., 1999).

The ratio of streamwise and temporal separations where

the space–time correlations show a maximum is usually

used to obtain the convection velocity. The maximum

correlation can be obtained in two ways, as a fixed time

delay or a fixed streamwise separation. Convection
velocities Uþ

c of qw as functions of the temporal sepa-

ration tþ and the streamwise separation xþ obtained

from Fig. 11 are given in Fig. 12. It is apparent in Fig. 12

that the convection velocities of qw for Pr ¼ 0:025 are

larger than those of qw for Pr ¼ 0:71 for the two Rey-

nolds numbers. In the case of Pr ¼ 0:71, the convection

velocities as a function of tþ show slightly lower values

as compared to those as a function of xþ due to the
broad-band contours in the space–time correlations, but

those convection velocities show an almost identical

trend. At small separations, the convection velocities

remain almost constant for the two Reynolds numbers,

while, at large separations, the convection velocities for

Res ¼ 180 increase slightly but those for Res ¼ 1020 in-

crease significantly, meaning that the effect of large

scales is more prominent for Res ¼ 1020. In the case of
Pr ¼ 0:025, on the other hand, the convection velocities

as functions of tþ and xþ show an almost identical

behavior owing to the narrow-band contours in the

space–time correlations. The convection velocities in-

crease gradually with increasing separations for the two

Reynolds numbers, and the Reynolds-number depen-

dence is evident at all separations.

Overall convection velocity is a useful approximation
in applying Taylor hypothesis. Wills (1964) proposed

the overall convection velocity Uco expressed as
Uco ¼
o

oUc

Z
RðUct; tÞdt

����
Uc¼Uco

¼ 0: ð3Þ

Eq. (3) is satisfied when an integration time scale in the

moving reference frame with the convection velocity
shows a maximum. With the use of Eq. (3), the overall

convection velocities of qw with Pr ¼ 0:71 are 10:5us and



Fig. 13. One-dimensional streamwise-wavenumber power spectra of qw
converted from frequency spectra using Taylor hypothesis for

Res ¼ 1020 with Pr ¼ 0:71 and 0.025: ––, streamwise-wavenumber

spectra; - - -, spectra converted from frequency spectra using the con-

vection velocity obtained from Eq. (4); Æ Æ Æ, spectra converted from

frequency spectra using the convection velocity obtained from Eq. (3).
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13:8us for Res ¼ 180 and 1020, whereas those of qw with

Pr ¼ 0:025 are 14:8us and 7:2us for Res ¼ 180 and 1020,

respectively.

The obtained overall convection velocities increase
with increasing Reynolds number for the two Prandtl

numbers. The significant increase in Uco for Res ¼ 1020

can be predicted from Fig. 12, because the variation of

the convection velocities becomes more prominent with

increasing separations for Res ¼ 1020. That is, the con-

vection velocities obtained from Eq. (3) apply to all

scales from small to large.

In order to remove scale dependence of the overall
convection velocity, Kim and Hussain (1993) used the

overall convection velocities Uco defined as

Uco ¼
Dxmax

Dt
; ð4Þ

where Dxmax is the streamwise separation distance where

the space–time correlations show a maximum correla-

tion at a given time Dt. In the present study, Dtþ � 18
was chosen for the given Reynolds and Prandtl num-

bers, as in Kim and Hussain (1993). With the use of Eq.

(4), the overall convection velocities of qw with Pr ¼ 0:71
are 10:1us and 9:4us for Res ¼ 180 and 1020, whereas

those of qw with Pr ¼ 0:025 are 14:1us and 15:3us for

Res ¼ 180 and 1020, respectively. For Res ¼ 180, the

convection velocities obtained from Eq. (4) are almost

the same as obtained from Eq. (3) for the two Prandtl
numbers, a similarity that must be due to be the low

Reynolds-number effect because small and large scales

are not clearly separated at Res ¼ 180. In contrast, for

Res ¼ 1020, the convection velocities obtained from Eq.

(4) are significantly lower than those obtained from Eq.

(3) for the Prandtl numbers investigated.

We will examine which overall convection velocity

obtained from Eqs. (3) and (4) is valid for Res ¼ 1020.
Fig. 13 shows the streamwise-wavenumber spectra

converted from the frequency spectra using Taylor

hypothesis for Res ¼ 1020 with Pr ¼ 0:71 and 0.025. In

Fig. 13, the streamwise-wavenumber spectra as shown

in Figs. 4(a) and 6(a) are also included for comparison.

In the case of Pr ¼ 0:71, the spectrum obtained using the

overall convection velocity from Eq. (4) shows good

agreement with the wavenumber spectrum at the nearly
whole range of wavenumbers, whereas that obtained

using the overall convection velocity from Eq. (3) does

not agree with the wavenumber spectrum at the whole

range of wavenumbers. In the case of Pr ¼ 0:025, the
spectrum obtained using the overall convection velocity

from Eq. (4) shows better agreement with the wave-

number spectra at high wavenumbers than that with the

overall convection velocity obtained from Eq. (3).
Hence, at the Reynolds number of Res ¼ 1020, it can be

concluded that the overall convection velocities ob-

tained from Eq. (4) are more appropriate than those

obtained from Eq. (3).
In summary, the overall convection velocities increase

with decreasing Prandtl number for the two Reynolds
numbers, which agrees with the trend obtained from

DNS in a turbulent flume by Kowalewski et al. (2003),

who investigated the overall convection velocity of h0

with working fluids of air and water at Res ¼ 171. This is

because large scales become more prominent with

decreasing Prandtl number and convection of large

scales is determined by the outer layer. As for the

Reynolds-number dependence, on the other hand, the
convection velocities obtained from Eq. (4) for Pr ¼ 0:71
decrease slightly with increasing Reynolds number,

whereas those for Pr ¼ 0:025 increase slightly with

increasing Reynolds number.

3.6. Probability density function

The behavior of the surface heat-flux fluctuations qw
was investigated with the use of the probability density

functions (PDFs). Fig. 14 shows the PDFs of qw for all

four Reynolds numbers, Res ¼ 180, 395, 640 and 1020

with Pr ¼ 0:025 and 0.71, compared with those of s1. It
is shown in Fig. 14 that sweep motion occurs less fre-

quently, but contributes more significantly to the heat

transport for both of the Prandtl numbers. The Rey-

nolds-number effect is evident in the positive and nega-
tive tails of the PDFs for both of the Prandtl numbers.

In addition, a comparison of Fig. 14(a) and (b) reveals

that the PDFs of qw for Pr ¼ 0:71 are mostly similar to

those of s1, while there exists some dissimilarity between

s1 and qw at positive and negative tails. That is, in the

positive tail, the PDF of qw for Pr ¼ 0:71 shows a larger

value than that of s1, indicating that qw is more posi-

tively skewed in space than s1. This trend is in accor-



Fig. 14. Probability density functions of the streamwise wall shear-

stress and surface heat-flux fluctuations: (a) s1; (b) qw for Pr ¼ 0:71; (c)

qw for Pr ¼ 0:025. ––, Res ¼ 1020; - - -, Res ¼ 640; Æ Æ Æ, Res ¼ 395; – � –,
Res ¼ 180. �, u0 at yþ ’ 2:7 of Antonia et al. (1988) for Red2 ¼ 2000;

h, h0 at yþ ’ 2:7 of Antonia et al. (1988) for Red2 ¼ 2000.

Fig. 15. Fractional contributions of the mean-square values: (a) s1; (b)
qw for Pr ¼ 0:71; (c) qw for Pr ¼ 0:025. ––, Res ¼ 1020; - - -, Res ¼ 640;

Æ Æ Æ, Res ¼ 395; – � –, Res ¼ 180.
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dance with a measurement in a turbulent thermal

boundary layer by Antonia et al. (1988) where they

showed the PDFs of u0 and h0 at yþ ¼ 2:7 for Red2 ¼
2000 (Red2 ¼ 2085, for the present result at Res ¼ 1020).

Note that Red2 is the Reynolds number based on the

free-stream velocity and the momentum thickness. In

the negative tail, in contrast, an interesting behavior is

clearly observed, that is, the PDF of s1 extends to
s1=s1rms ¼ �5, whereas that of qw stays within qw=
qwrms

¼ �2. The reason will be discussed later in con-

junction with the wall pressure fluctuations.

The fractional contributions of the mean-square val-

ues are shown in Fig. 15, where the integration of the

area under the curve corresponds to 1. It can be seen in

Fig. 15 that the contribution of positive values to qwrms
is

much larger than that of negative values for both of the
Prandtl numbers. A significant Reynolds-number

dependence is found for Pr ¼ 0:025 due to the enhanced

convective effect. In addition, a comparison of Fig. 15(a)

and (b) again reveals the dissimilarity between s1 and qw
with Pr ¼ 0:71 in the negative side. That is, the small

magnitude of negative qw (qw=qwrms
� �1) contributes

more significantly to the mean-square values than that

of negative s1 (s1=s1rms � �1).

Higher-order turbulence statistics, skewness and

flatness factors of s1 and qw, are shown in Fig. 16(a) and

(b), respectively. Those of u0 at yþ ¼ 0:05 of Moser et al.

(1999) are also included for comparison. For Pr ¼ 0:71,
SðqwÞ and F ðqwÞ increase slightly with increasing Rey-

nolds number. A comparison of qw and s1 reveals that

SðqwÞ is more positively skewed than Sðs1Þ for the given
Reynolds numbers, which coincides with the behavior of

PDFs (see Fig. 14(a) and (b)). Moreover, F ðqwÞ shows

larger values than F ðs1Þ, indicating that qw is more



Fig. 16. Skewness and flatness factors of s1 and qw: (a) skewness factor;
(b) flatness factor. �, s1; d, qw for Pr ¼ 0:71; n, qw for Pr ¼ 0:025; h,

u0 at yþ ¼ 0:05 of Moser et al. (1999).
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intermittent than s1. For Pr ¼ 0:025, in contrast, SðqwÞ
and F ðqwÞ increase significantly with increasing Rey-

nolds number. The increasing rates of SðqwÞ and F ðqwÞ
for Pr ¼ 0:025 is much larger than those for Pr ¼ 0:71,
indicating that with increasing Reynolds number, the

convective effect becomes more significant than the

conductive one for Pr ¼ 0:025. It is interesting to note

that in the case of Res ¼ 1020, the values of SðqwÞ and
F ðqwÞ for Pr ¼ 0:025 is almost the same as those for
Pr ¼ 0:71, even if their turbulent heat fluxes themselves

are different.

In order to examine the correlations between flow

and thermal fields, the joint probability density function

between s1 and qw is given in Fig. 17. For Pr ¼ 0:71, a
strong positive correlation between s1 and qw is found,

but for Pr ¼ 0:025, qw is less well correlated with s1 due
to a strong conductive effect. Fig. 17 also shows that the
correlations at higher magnitude fluctuations decrease

with increasing Reynolds number for both of the Pra-

ndtl numbers. Moreover, a closer inspection of the case

Pr ¼ 0:025 finds that the maximum in the third quadrant
Fig. 17. Joint probability density functions of the streamwise wall shear-stre

Res ¼ 1020; - - -, Res ¼ 640; Æ Æ Æ, Res ¼ 395; – � –, Res ¼ 180. Contour levels fo

Pr ¼ 0:025 are from 0.025 to 0.225 with increments of 0.025.
shifts away from the origin with increasing Reynolds

number. This is caused by the enhanced convective effect

even in a low Pr fluid.
As was shown in the probability density functions

(Figs. 14 and 15), there exists some dissimilarity between

s1 and qw with Pr ¼ 0:71 in the large positive and neg-

ative tails. The large negative tails showed an especially

noticeable difference. This difference must be closely

associated with the large wall pressure fluctuations be-

cause the importance of the pressure in causing the

dissimilarity between the momentum and thermal fields

has been indicated by several researchers (see, for
example, Guezennec et al., 1990; Kong et al., 2001).

Therefore, we will examine the statistical quantities re-

lated to the wall pressure fluctuations such as s1pw and

qwpw for the two Reynolds numbers, Res ¼ 180 and 640,

where pw denotes the wall pressure fluctuations. The

resultant values of s1pw for Res ¼ 180 and 640 are 0.05

and 0.10, whereas those of qwpw for Res ¼ 180 and 640

are )0.05 and )0.11, respectively. Here, it is interesting
to note that the values of s1pw are positive, whereas

those of qwpw are negative for both Reynolds numbers.

In order to examine the difference in s1pw and qwpw
with Pr ¼ 0:71 in detail, we will use the quadrant anal-

ysis. The fractional contribution and probability distri-

bution of s1pw and qwpw from each quadrant for

Res ¼ 180 and 640 are summarized in Tables 2 and 3.

Note that ðs1pwÞj and ðqwpwÞj are the fractional contri-
bution from the jth quadrant and P ðs1pwÞj and P ðqwpwÞj
are the probability of the jth quadrant. It is indeed

found that the contributions to s1pw are more significant

in the first ðs1 > 0; pw > 0Þ and third ðs1 < 0; pw < 0Þ
quadrants for both Reynolds numbers, which produces

the positive value in s1pw. The contributions to qwpw, on
the other hand, are from the second ðqw < 0; pw > 0Þ
and fourth ðqw > 0; pw < 0Þ quadrants, which produces
ss and surface heat-flux fluctuations: (a) Pr ¼ 0:71; (b) Pr ¼ 0:025. ––,

r Pr ¼ 0:71 are from 0.1 to 0.6 with increments of 0.1, while those for



Table 2

Fractional contribution and probability distribution of s1pw and qwpw
at Pr ¼ 0:71 from each quadrant for Res ¼ 180

Event ðs1pwÞj P ðs1pwÞj ðqwpwÞj P ðqwpwÞj
j ¼ 1 0.10 0.23 0.08 0.21

j ¼ 2 )0.07 0.27 )0.10 0.29

j ¼ 3 0.10 0.29 0.08 0.27

j ¼ 4 )0.08 0.21 )0.11 0.23

Table 3

Fractional contribution and probability distribution of s1pw and qwpw
at Pr ¼ 0:71 from each quadrant for Res ¼ 640

Event ðs1pwÞj P ðs1pwÞj ðqwpwÞj P ðqwpwÞj
j ¼ 1 0.17 0.23 0.13 0.20

j ¼ 2 )0.10 0.27 )0.16 0.30

j ¼ 3 0.16 0.30 0.12 0.27

j ¼ 4 )0.13 0.20 )0.20 0.23

Fig. 18. Contours of the instantaneous pw, s1 and qw with Pr ¼ 0:71 for

Res ¼ 640: (a) pw (contours are from )9.0 to 19.0 with increments of

1.0); (b) s1 (contours are from )1.3 to 1.9 with increments of 0.1); (c)

qw at Pr ¼ 0:71 (contours are from )0.7 to 2.5 with increments of 0.1).

Positive values are solid lines, whereas negative values are dashed lines.
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the negative value in qwpw. These results indicate that

the high dissimilarity between s1 and qw with Pr ¼ 0:71
is closely associated with the wall pressure fluctuations.

The contours of the instantaneous pw, s1 and qw with

Pr ¼ 0:71 for Res ¼ 640 are shown in Fig. 18. It is clear

from Fig. 18 that the positive and negative regions of qw
are mostly similar to those of s1. However, there is the

noticeable dissimilarity between s1 and qw in the large
wall pressure fluctuations. The dissimilarity is especially

clear in the large negative pw. In Fig. 18, the typical

events of the dissimilarity are marked by A and B. In

these events, the large negative regions of s1 correspond
to those of pw, which produces the positive value of

s1pw. In contrast, the large positive and small negative

regions of qw correspond to the large negative regions of

pw, which produces the negative value of qwpw. Here, it
should be noted that when a large negative s1 appears,

there is a large negative pw, but the reverse is not nec-

essarily true. In addition, it is interesting to note that the

magnitude of the negative qw remains unchanged even

with the large positive and negative pw. This behavior

results in the large difference in the negative tails of the

PDFs between s1 and qw.

3.7. Instantaneous fields

We will show a variation of the instantaneous field as

a function of the Reynolds number. Fig. 19 shows the
contours of the instantaneous surface heat-flux fluctua-

tions qw for all four Reynolds numbers, Res ¼ 180, 395,

640 and 1020 with Pr ¼ 0:71 over the full computational

domain. It can be seen in Fig. 19 that with increasing

Reynolds number negative regions of qw tend to show

dense clustering structures. This behavior is more clearly

illustrated in Fig. 20, where the contours of qw with

Pr ¼ 0:71 are shown for Res ¼ 180 and 1020 with a
similarly visualized domain in wall units ðLþx � Lþz ¼
2000� 1000Þ. In Fig. 20, the negative regions of qw for
Res ¼ 180 show clear streaky structures with a mean

spanwise spacing of about 100 wall units, whereas those

of qw for Res ¼ 1020 show dense clustering structures

where several meandering negative regions merge. This

results in the peculiar behavior of the spanwise two-

point correlations that the magnitude of the negative

maximum at zþ � 55 decreases with increasing Rey-

nolds number and the positive peak emerges at zþ � 110
for Res ¼ 1020 (Fig. 10(a)). Moreover, the dense clus-

tering structures exhibit a large-scale pattern in the

spanwise direction. The large-scale pattern is clearly

observed in the cases of Res ¼ 640 and 1020 (see Fig.

19(c) and (d)). The most typical large-scale pattern has a

spanwise spacing of about 1:3–1:6d, which agrees with

the wavelength where the spanwise power spectra show

the local peak (see Fig. 8(a)).
Fig. 21 shows the contours of the instantaneous

surface heat-flux fluctuations qw for the given Reynolds

numbers with Pr ¼ 0:025 over the full computational

domain. In Fig. 21, the thermal structures show large-

scale structures scaled with the outer variable d for

all four Reynolds numbers. At the lowest Reynolds



Fig. 19. Contours of the instantaneous qw with Pr ¼ 0:71: (a)

Res ¼ 180; (b) Res ¼ 395; (c) Res ¼ 640; (d) Res ¼ 1020.

Fig. 20. Contours of the intantaneous qw with Pr ¼ 0:71 with a simi-

larly visualized domain in wall units: (a) Res ¼ 180; (b) Res ¼ 1020.
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number, Res ¼ 180, large-scale structures with a span-
wise spacing of about 2d dominate. At Reynolds num-

bers over Res ¼ 395, large-scale structures with a

spanwise spacing of about 1:3–1:6d are prominent. The

spanwise spacing of these large-scale structures corre-

sponds well to the wavelengths in the large peaks as

shown in the spanwise power spectra (see Fig. 8(b)).

We will examine the effect of the outer layer from the

instantaneous field for Res ¼ 1020. Fig. 22(a) and (b)
show the iso-surfaces of large-scale structures of h0 in the
outer layer for Res ¼ 1020 with Pr ¼ 0:71 and 0.025,

respectively. In Fig. 22, the values for Pr ¼ 0:71 are
normalized by their own rms values at each wall-normal

location, whereas those for Pr ¼ 0:025 are non-dimen-

sionalized by wall units. This is because in the former

case the strong intensities arise in the near-wall region,

while in the latter case they occur farther away from the

wall (see Fig. 2(b)). It is shown in Fig. 22 that there

certainly exist large-scale structures in the outer layer for

both of the Prandtl numbers. Notably, in the case of
Pr ¼ 0:025, the large-scale structures appear clearly in

the outer layer, and they extend down to the wall. This is

because in the case of Pr ¼ 0:025, the temperature marks

a wider range of the flow region due to the strong

thermal diffusion. A comparison of Fig. 22(a) and (b)

indicates that positive and negative large-scale structures

for Pr ¼ 0:71 show a strong similarity to those for

Pr ¼ 0:025, although the shape of the structures for
Pr ¼ 0:71 becomes more complicated than those of the

structures for Pr ¼ 0:025 due to the strong convective

effect. Moreover, we see that the large-scale structures of

h0 in the outer layer occur at almost the same locations

as observed in the large-scale patterns of qw for Pr ¼
0:71 and the large-scale structures of qw for Pr ¼ 0:025,
indicating that the outer-layer effect certainly extends to

the surface heat-flux fluctuations.
To examine the interaction between the inner and

outer layers for Res ¼ 1020 with Pr ¼ 0:71 and 0.025

quantitatively, we introduce a function called an overlap

ratio (OLR). In the OLR, variables / and w are bina-

rized to be either 0 or 1 based on a certain threshold, and



Fig. 22. Iso-surfaces of large-scale structures of h0 in the outer layer for

Res ¼ 1020; (a) Pr ¼ 0:71; (b) Pr ¼ 0:025. Dark-gray, h=h0rms < �1:75

for Pr ¼ 0:71 and h0þ < �1:0 for Pr ¼ 0:025; light-gray, h=h0rms > 1:75

for Pr ¼ 0:71 and h0þ > 1:0 for Pr ¼ 0:025. The box visulaized here is

12:8d� d� 6:4d in the steamwise, wall-normal and spanwise direc-

tions, corresponding to that of 13 056· 1020· 6528ðm=usÞ3. The direc-

tion of the flow is from top-left to bottom-right.

Fig. 21. Contours of the intantaneous qw with Pr ¼ 0:025: (a)

Res ¼ 180; (b) Res ¼ 395; (c) Res ¼ 640; (d) Res ¼ 1020.

Table 4

Overlap ratio between the high- and low-temperature regions in the

LSMs and the positive and negative regions of ~qw for Res ¼ 1020 with

Pr ¼ 0:71

OLR(h0 < �1:75h0rmsj~qw < �1:5~qwrms
) 0.83

OLR(h0 < �1:75h0rmsj~qw > 1:5~qwrms
) 0.34

OLR(h0 < 1:75h0rmsj~qw > 1:5~qwrms
) 0.73

OLR(h0 < 1:75h0rmsj~qw < �1:5~qwrms
) 0.24

H. Abe et al. / Int. J. Heat and Fluid Flow 25 (2004) 404–419 417
the binarized ones are represented by /̂ and ŵ. Then, the
OLR is defined as the ratio of the overlapping area be-

tween /̂ and ŵ to the area of either /̂ or ŵ:

OLRð/ < /0 or / > /0 j w < w0 or w > w0Þ

¼
X

/̂ŵ
.X

ŵ2; ð5Þ

where /0 and w0 are the threshold values. We obtain the

OLR between the surface heat-flux fluctuations qw and

the projected area of high or low regions of h0 in the
LSMs, where the filtered qw (i.e. ~qw) and the instanta-
neous qw are used for Pr ¼ 0:71 and 0.025, respectively,

where a top-hat filter function with the streamwise and

spanwise filter lengths of ‘þx ¼ 293 and ‘þz ¼ 47, respec-

tively, is applied to the instantaneous qw for Pr ¼ 0:71.
First, the surface heat-flux fluctuations for Pr ¼ 0:71
and 0.025 are binarized with thresholds of ~qw0

=~qwrms
¼

	1:5 and qw0
=qwrms

¼ 	1:5, respectively. Next, the high

and low regions for Pr ¼ 0:71 and 0.025 are binarized
with respect to h00=h

0
rms ¼ 	1:75 and h00=Ts ¼ 	1:0,

respectively, and the binarized values are projected onto

the wall and then re-binarized as 0 or 1. The OLRs ob-

tained between the high- and low-temperature regions in

the LSMs and the positive and negative regions of qw for

Res ¼ 1020 are summarized in Tables 4 and 5 with

Pr ¼ 0:71 and 0.025, respectively. Tables 4 and 5 show

that the correspondence between the inner and outer
layer structures is indeed high for each Prandtl number.



Table 5

Overlap ratio between the high- and low-temperature regions in the

LSMs and the positive and negative regions of qw for Res ¼ 1020 with

Pr ¼ 0:025

OLR(h0 < �1:0Tsjqw < �1:5qwrms
) 0.83

OLR(h0 < �1:0Tsjqw < 1:5qwrms
) 0.06

OLR(h0 > 1:0Tsjqw > 1:5qwrms
) 0.63

OLR(h0 > 1:0Tsjqw < �1:5qwrms
) 0.08
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4. Conclusions

In the present study, we performed DNS of turbulent

heat transfer in a channel flow with the constant time-
averaged heat-flux condition up to Res ¼ 1020 with

Pr ¼ 0:025 and 0.71, and investigated the characteristics

of the surface heat-flux fluctuations.

We found that the root-mean-square values increase

with increasing Reynolds number for the two Prandtl

numbers. The rate of increase for Pr ¼ 0:025 is larger

than that for Pr ¼ 0:71 because of the increasing con-

vective effect. Although the rms values for Pr ¼ 0:025
showed smaller values than those for Pr ¼ 0:71 in the

present Reynolds-number range, the rms value of qw for

Pr ¼ 0:025 seems to exceed that of qw for Pr ¼ 0:71
when the Reynolds number becomes Res � 1000.

It was shown in the power spectra and the two-point

correlations that the Reynolds-number dependence is

less significant when scaled with the inner and outer

variables for Pr ¼ 0:71 and 0.025, respectively. Espe-
cially, in the case of Pr ¼ 0:025, it is evident that large

scales are scaled well with the outer variables. Moreover,

it was shown in the spanwise power spectra that, in the

case of Pr ¼ 0:71, there appears a clear local peak at

kzd ’ 5 for Res ¼ 395, 640 and 1020, whereas, in the case

of Pr ¼ 0:025, two large peaks exist at kzd ’ 2 and

kzd ¼ 4–5 for Res ¼ 395, 640 and 1020. These local and

large peaks increase with increasing Reynolds number.
This result suggests that the effect of large-scale struc-

tures extend even to the surface heat-flux fluctuations

and becomes more prominent with increasing Reynolds

number.

It was shown in the space–time correlations that the

surface heat-flux fluctuations propagate downstream for

the Reynolds and Prandtl numbers investigated. A

comparison of the space–time correlations between
Pr ¼ 0:71 and 0.025 indicated that the inclination angle

of the correlations for Pr ¼ 0:025 is much steeper than

that of the correlations for Pr ¼ 0:71, suggesting that qw
for Pr ¼ 0:025 has a larger convection velocity than the

one for Pr ¼ 0:71. The overall convection velocities of

qw with Pr ¼ 0:71 are 10:1us and 9:4us for Res ¼ 180 and

1020, whereas those of qw with Pr ¼ 0:025 are 14:1us and
15:3us for Res ¼ 180 and 1020, respectively.

It was found in the probability density function that

there is some dissimilarity between s1 and qw with

Pr ¼ 0:71 in the large positive and negative tails. The
large negative tails showed an especially noticeable dif-

ference. The examination of the dissimilarity between s1
and qw showed that qw are mostly similar to s1, while
there exists a noticeable dissimilarity in the large positive
and negative fluctuations. Closer inspection showed that

a high dissimilarity between s1 and qw exists in the large

wall pressure fluctuations.

The instantaneous fields showed that, in the case of

Pr ¼ 0:71, large-scale patterns with dense clustering

structures appear for high Reynolds numbers, whereas,

in the case of Pr ¼ 0:025, large-scale structures with the

outer variable d are dominant. In addition, inspection of
the interaction between inner and outer layers revealed

that the positive and negative dominant regions in qw
correspond to the high- and low-temperature regions in

the LSMs for both of the Prandtl numbers. These results

indicate that the large-scale structures in the surface

heat-flux fluctuations are essentially phenomena associ-

ated with the LSMs for the thermal field existing in the

outer layer.
Ensemble averaged statistics are/will be presented at

http://murasun.me.noda.tus.ac.jp.
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